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ABSTRACT   

Clot elastic modulus (CEM) has recently been shown to correlate with various hemostatic and thrombotic disorders and 
may be an important diagnostic parameter in cardiovascular diseases. Current methods of CEM measurement lack 
repeatability and require large sample volume. We present a novel method named resonant acoustic spectroscopy with 
optical vibrometry (RASOV) that has the potential to assess CEM with higher accuracy and speed, and lower sample 
volume. To validate RASOV, we measured the acoustic spectrum of agarose gel with varied concentrations in open-
faced rectangular wells. Results showed a linear relationship between the natural resonant frequency and agarose content 
within a concentration range of 4 to 12 mg/mL. Furthermore, we observed that the resonant frequencies decrease with 
increasing transducer mass. As a highly accurate, resonance-based method, RASOV has great potential for 
biomechanical properties measurement, especially for human blood.   
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1. INTRODUCTION  
Cardiovascular disease (CVD) is the leading cause of death and disability in the world, causing over 17 million deaths in 
2008.[1] Methods for accurate assessment of CVD are needed for directing treatment. The stiffness of a blood clot, also 
known as clot elastic modulus (CEM), has been shown to correlate with various manifestations of CVD. For example, 
larger CEM was observed in patients with immunoglobulin G myeloma[2] and patients with premature coronary artery 
disease.[3] Altered fibrin clot structure was observed in patients with chronic obstructive pulmonary disease,[4] patients 
with cryptogenic ischemic stroke,[5] and patients with idiopathic venous thromboembolism.[6] Thus, CEM may be an 
important diagnostic parameter in CVD. 

Current methods and devices for assessing CEM include Thromboelastography (TEG),[7],[8] Rotational 
thromboelastometry (ROTEM) and the Hemodyne.[9] These methods are based upon measuring the ratio of stress to 
strain in the quasi-static regime. The biggest challenge for the quasi-static approach when measuring small (<1 cm3) and 
soft (<100 kPa) biosamples, such as blood clots, is the need for high measurement sensitivity of both force and 
displacement simultaneously.[12] To achieve this typically requires using large, non-perturbative, stresses, and inevitably 
leads to poor accuracy, lack of repeatability, long measurement time and typically requires sample volumes (>100 µL).  
These drawbacks limit the popularity and availability of clinical CEM assessment devices. 

To address these limitations, a novel technique called Resonant Acoustic Spectroscopy (RAS) was recently 
developed,[10],[11] in which the elastic modulus is determined by measuring the sample’s natural resonant frequency. 
Oldenburg and Boppart first demonstrated the relastionship between acoustic resonances in tissues and elasticity.[10] By 
employing embedded magnetic nanoparticles (MNPs) and modulating the tissue with a chirped-frequency (frequency-
swept) stimulation, they successfully measured the mechanical resonant modes of cylindrical agarose phantoms with 
open sides, and calculated the Young’s modulus from the resonant frequencies. Oldenburg et al further demonstrated the 
resonance modes of fibrin clots in an open-faced rectangular well by employing a metallic slab transducer.  In that work, 
a high correlation between resonant frequency and fibrinogen content was found.[11] These works show the potential of 
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RAS as a novel CEM assessment modality with high accuracy, fast speed, and small sample size requirement. In order to 
advance this technology, further validating studies are needed to investigate the effect of the transduction method on the 
measured acoustic resonances.  In particular, we hypothesized that inertia from transducers of non-negligible weight will 
lower the observed resonance frequencies.  In this paper, we measured the acoustic spectrum of agarose gel as a 
calibration material of similar elastic modulus as a blood clot, and compared the results using three different transducers: 
MNPs (negligible mass), a metallic slab (~2.2 mg) and a steel microbead (~4.1 mg). As we will show below, decreased 
resonant frequencies with increased transducer mass were observed.  

2. MATERIALS AND METHODS 
2.1 Sample preparation 

Due to the similar stiffness between blood clots and agarose gel, and the simplicity of controlling the stiffness of agarose, 
we used water-based agarose gel as tissue phantoms to simulate the mechanical properties of human blood clots. Varying 
concentrations (3 – 12 mg/mL) of agarose (Type I-A, Low EEO, Sigma) solutions were mixed with ~0.7 mg/mL TiO2 
(powder, < 5 µm, Sigma), which were used to provide optical scattering in RASOV. For phantoms using embedded 
MNPs as the transducer, ~5 mg/mL Fe3O4 (nanopowder, < 50 nm, Sigma) were added to the solution. Mixtures were 
heated to above 85°C degree for 15 minutes and then gelled into open-faced rectangular wells for a total sample volume 
of 360 µL. Glass coverslips were used during the gelation process to flatten the surface and prevent dehydration. After 
curing for 24 hours, glass coverslips were removed from the sample and mechanical resonance spectra were collected.   

2.2 RASOV system 

Our RASOV system is coupled with a spectral-domain optical coherence tomography (OCT) system, identical to that 
used previously.[10] A broadband Ti:Sapphire laser source centered at 800 nm with a bandwidth of ~125 nm (Griffin, 
Kapteyn-Murnane Labs, Boulder, Co) was used to provide an axial resolution of ~3 µm. A 30-mm-focal length objective 
lens was used to focus the laser beam to the sample, providing a lateral resolution of 12 µm. The average power incident 
on the sample was ~8 mW. The spectral interferograms were recorded by a line CCD camera (Dalsa Piranha 2) using 
2048 pixels and a scan rate of 1, 2, or 5 kHz. An electromagnet is used to provide a gradient magnetic force on the 
transducer, which, in turn, transfers this force to the sample. The electromagnet is controlled by customized D/A 
convertor and a 288 W power amplifier (ATE 36-8M, Kepco), and can generate a peak magnetic field and gradient of 
0.15 T and 15 T/m, respectively.  A 625W water chiller (T255P, ThermoTek) was used to prevent overheating. A 
schematic of the experimental setup is shown in Figure 1. Our metallic slab is cut into a 2 mm х 2 mm х 0.025 mm 
(length  width  height) slab from an amorphous alloy sheet (Vacuumschmelze steel), and the mass of the slab is ~2.1 
mg. The steel microbead we used is from McMaster, which has 1mm diameter and ~4.1 mg mass. The microwell 
resonator is made by customized 3D printing, the size of which is 6 mm х 6 mm х 10 mm. 
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Figure 2. OCT image of microbead on the top surface of an agarose phantom. Image dimensions are 7 mm × 2 mm 

(width × height).    

When the measurement starts, a chirped-frequency signal is sent to magnet through the D/A convertor and amplified by 
the power supply, generating a varying frequency magnetic field. The sample will therefore be vibrated by the transducer 
while its surface displacement is simultaneously monitored by OCT. The mechanical spectrum is obtained as the 
vibration amplitude and phase lag versus driving frequency. The magnitude of the magnetic field is adjusted so that the 
sample only vibrates with amplitudes < 300 nm, corresponding to strains on the order of 0.003%. This ensures that our 
elasticity measurement is in the linear viscoelastic regime, where the displacement of the sample can be described as:  ∆ݖሺ߱ሻ ൌ  ሚሺ߱ሻ݁௜ఠ௧                    (1)ܣ

and the vibration amplitude can be described by a complex Lorentzian function as follows: ܣሚሺ߱ሻ ൌ ௤ఠ೙మିఠమି௜ఠఊ೙                     (2) 

where q is proportional to the driving force, ߱௡ is the resonant frequency of mode n and ߛ௡ is the damping coefficient. 
By fitting the mechanical spectrum to this Lorentzian solution, the resonant frequency for different modes is then 
determined.  

A representative example is shown in Figure 3. In this example, four resonant modes were observed. The fundamental 
mode (n=0) is around 284 Hz, with a strong peak amplitude and a characteristic phase lag shift from 0 (in-phase) at 
frequencies below the resonance, to π (out-of-phase) above the resonance. The phase lag shifts at the higher resonant 
modes become overlapped by one another, especially the third resonant mode and the fourth resonant mode. However, 
we were still able to determine the resonant frequency of these higher modes from fitting the amplitude spectrum. Also, 
we should note that a strong system background noise peak occurs at 60 Hz and its harmonics.  
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4. CONCLUSION 
This paper reports on the mechanical measurement of agarose gel in a closed microwell using RASOV. Acoustic spectra 
were obtained using three different types of transducers: Magnetic nanoparticles, a metallic slab, and a steel microbead. 
Results show a high correlation between the fundamental-mode frequency of agarose gel and the agarose concentration 
according to a power law. Furthermore, we show that weight of the transducer influences the resonant modes in the 
microwell, as the measured resonant frequencies increase with lower transducer weight.  Current effort is underway to 
model the elastic response of this system when coupled to a microtransducer of non-negligible weight, in order to 
quantitatively extract Young’s modulus from the resonance frequency measurement. These initial efforts constitute a 
baseline for calibrating the system response in the absence of such a model, which will be used in our future efforts to 
construct a clinical blood sampling instrument to measure CEM. Our works show a great potential of RASOV for 
clinical CEM assessment with high accuracy, fast speed and small sample volume. 
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