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Abstract: Digital holography is used to image surface acoustic waves in tissue-mimicking 
silicone phantoms. Elastic depth profiles, at depths up to 30mm, are then obtained from the phase 
velocity dispersion curves by solving the inverse problem. 
OCIS codes: (090.1995) Digital Holography; (170.3880) Medical and biological imaging. 
 

1. Introduction 
 

Elastography is a promising method for the early detection of breast cancer, since tumors exhibit an elastic modulus 
3-10× greater than healthy tissue [1]. Several imaging modalities have thus been developed that contrast soft-tissue 
elasticity [2, 3]. We recently reported a new elastography technique based on digital holography [4], which is 
advantageous as it provides the ability to image a wide area along with nanometer displacement sensitivity.  In this 
paper, we use image plane digital holography to map surface acoustic waves (SAWs) on silicone phantoms that are 
mechanically similar to breast tissue. The phantoms’ elastic properties are then inferred from the SAW velocities. 
This method is similar to techniques used in non-destructive testing for materials analysis, where the internal 
stiffness properties are inferred from SAW behavior [5]. In fact, soft tissue elastography from SAWs is a growing 
area of interest [6, 7] – many of these experiments, however, have been accomplished using Doppler vibrometry, 
which is unable to rapidly analyze an entire surface region. 

As a first step toward 3D elastography imaging, here we investigate 1D (depth-dependent) elastography. Since 
the penetration depth of SAWs (in particular Rayleigh Waves) is approximately one wavelength, variations in 
elasticity as a function of depth are observed as variations in SAW velocity versus wavelength. Thus, in a phantom 
composed of multiple layers of varying elastic moduli, SAWs at a lower frequency (longer wavelength) exhibit 
velocities corresponding to the elastic modulus of the lower layers, and vice versa. Here we present, for the first 
time, an inversion algorithm based on this theoretical relationship that is applied to the holographically measured 
dispersion curves, yielding the elasticity vs. depth profile in single- and multi-layered phantoms.   

 

2. Methods 
 

2.1 Experimental Setup 
The in-line, image plane, digital holography system employed to map SAWs is illustrated in Fig. 1(a). The beam 
from a 5mW, 633nm Helium-Neon laser (Thorlabs, Newton, NJ) is divided into reference and object paths with a 
92:8 beamsplitter (with 92% of the power going along the object path). A 2.5× beam expander, in conjunction with a 
2” diameter downward reflecting mirror, was then used to illuminate the phantom sample. The diffusely reflected 
light (speckle) from the phantom was then directed through a 200mm focal length, 2-in diameter imaging lens, onto 
the sensor of a high-speed CMOS camera (Photron FastCam SA3, Japan). A 1:1 magnification was used, mapping 
an 8.5mm x 8.5mm area of the phantom onto 512 × 512 pixels of the camera array. An adjustable aperture was 
utilized behind the imaging lens, so that the speckles were resolvable by the camera sensor. The camera framerate 
was set at 3000Hz, ensuring ≥10× sampling of each period of the SAWs.  

Light along the reference path was passed through a spatial filter and 15× beam expander before being directed 
onto the camera. The speckled image of the phantom interacts with this reference beam, forming an interferogram 
on the camera. A neutral density filter was placed along the reference arm to optimize the interference signal within 
the dynamic range of the camera. As SAWs propagate along the surface of the phantom, a phase shift is induced in 
the interferogram caused by the changing optical path difference between the reference and scattered fields. The 
system is therefore sensitive to out-of-plane surface displacements.  

A piezo-electric transducer (Kinetic Ceramics, Hayward, CA), placed immediately outside the illumination area, 
was used to excite the surface waves. The transducer was driven at various frequencies between 70-320Hz. The 
mechanical waves were allowed to reach a steady state at each frequency, before the camera recorded the 
interferogram in real time. A temporal phase shifting algorithm, detailed in Ref [4], is then used to obtain a map of 
the phase of the SAW (not to be confused with the optical phase, which is used to infer the SAW phase). The speed 
of the SAWs is then obtained by inspecting the time series of phase maps (illustrated in Figs. 1(b) and (c)). 
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Fig. 1 (a) Experimental Setup (b) Example of interferogram and (c) the corresponding phase reconstruction. 
 

2.2 Inversion of Dispersion Data 
The behavior of Rayleigh waves propagating in elastically homogeneous media is well known, with a phase velocity 
(independent of frequency) given approximately by: 
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where E is the Young’s modulus, ρ is the density and ν is the Poisson’s ratio of the material [8]. The SAW velocity 
in heterogeneous samples where the elastic properties vary with depth is frequency-dependent. An approach to 
determining the SAW speed in this situation is to divide the sample into a large number of homogeneous layers. 
Wave equations are then written for each layer, along with the conditions of continuity across boundaries between 
the layers, a free top surface and finiteness at infinity. This results in a system of 4N equations (where N is the 
number of layers), and the determinant of this system contains an implicit relationship between the phase velocity 
and frequency [9]. This approach, while accurate, requires tedious numerical computation which is not easily 
amenable to an inverse process for determining the elastic properties in each layer. 

Our approach is to recognize that the amplitude of Rayleigh waves are exponentially decaying in depth [8, 9], 
and to approximate the effective Young’s modulus “felt” by the SAW as the average of the elasticities of the 
individual layers, weighted by the SAW amplitude at each depth, as follows: 
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where E(y) is the Young’s modulus as a function of depth y, f is the SAW frequency, L is the total depth of the 
sample, and α and β are constants that depend on Poisson’s ratio [8]. Equation (2) may then be solved together with 
equation (1) to obtain a dispersion curve cR(f) for a given E(y) (Note that Eeff(f) depends on the phase velocity cR, so 
this system must thus be solved iteratively). While this forward model is ad hoc, we find that the dispersion curves 
obtained are close to those calculated by the more accurate determinant based method, within the experimental error. 

Using this integral model, we may now solve the linear inverse problem of determining E(y) from an 
experimentally measured dispersion curve, cR(f). Using the layers model, we begin by discretizing the integral (2) 
into a linear matrix system AE=Eeff. Here, Eeff is a vector of discrete points representing the measured effective 
elasticity at each f (obtained from measurements of cR(f) via equation (1)), A is the observation matrix computed 
from the integral expressions in (2), and E is a vector representing the Young’s modulus at each depth, which we 
seek. Since inverse problems are highly sensitive to small errors, we used Total Variation regularization [10], in 

which we determine E by minimizing ))((
2
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parameter adjusted to scale the amount of regularization, which was chosen by the L-curve method [11].  
 

3. Results & Discussion 
 

Experimental results demonstrating the methods above are illustrated in Fig. 2. Two phantoms that mimic optical 
and mechanical breast tissue properties, prepared according to previously described methods [4], were studied. The 
first (Figs. 2(a) and 2(c)) was a homogeneous phantom of 30mm depth and a Young’s modulus of 26.5kPa. The 
second sample (Figs. 2(b) and 2(d)) was composed of two layers: a 15mm soft upper layer with Young’s modulus of 
6.37kPa, and a 15mm stiff lower layer with a Young’s modulus of 26.5kPa. Figs. 2(a) and 2(b) compare the 
experimental dispersion behavior with theoretical curves determined from our forward model in Eq. (2).  

 (a) 

 (b)  (c) 
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As shown in Fig. 2(a), the homogeneous phantom shows little to no dispersion, as expected. On the other hand, 
the heterogeneous sample shows a negative dispersion (Fig 2(b)), which matches well with the expected behavior. 
The corresponding elastic profiles obtained by solving the inverse problem are illustrated in Figs. 2(c) and 2(d), 
along with the independently calibrated values for the two phantoms. The results indicate good agreement between 
the results of the inversion and the true elasticity distributions, within an experimental uncertainty of ~10%.  

These results demonstrate the potential application of digital holography for elastography of soft tissues at 
clinically useful depths (30mm). Further work is needed to reduce experimental uncertainty and to study the effect 
of tissue viscoelasticity on the dispersion data. Importantly, the nanoscale sensitivity of holography allows for the 
detection of waves generated by a very small excitation, thus making the method minimally invasive. Holographic 
elastography therefore provides a novel, minimally-invasive, optical sensing method for the detection of breast 
cancer or other diseases that cause variations in tissue elasticity from that of healthy tissue. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 SAW dispersion curves for (a) homogeneous phantom (b) 2-layer heterogeneous phantom. Also shown is the corresponding Young’s 
modulus profile, obtained by inversion, for (c) the homogeneous phantom and (d) the heterogeneous phantom. 
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