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  Abstract—Magnetomotive Ultrasound (MMUS) is an emerging 

imaging modality in which magnetic nanoparticles (MNPs) are 

used as contrast agents. MNPs are driven by a time-varying 

magnetic force, and the resulting movement of the surrounding 

tissue is detected with a signal processing algorithm. However, 

there is currently no analytical model to quantitatively predict this 

magnetically-induced displacement. Toward the goal of predicting 

motion due to forces on a distribution of MNPs, in this work a 

model originally derived from the Navier-Stokes equation for the 

motion of a single magnetic particle subject to a magnetic gradient 

force is presented and validated.  Displacement amplitudes for a 

spatially inhomogeneous and temporally sinusoidal force were 

measured as a function of force amplitude and Young’s modulus, 

and the predicted linear and inverse relationships were confirmed 

in gelatin phantoms respectively with 3 out of 4 datasets exhibiting 

R2 ≥ 0.88. The mean absolute uncertainty between the predicted 

displacement magnitude and experimental results was 14%. These 

findings provide a means by which the performance of MMUS 

systems may be predicted to verify that systems are working to 

theoretical limits, and to compare results across laboratories. 

Index Terms—Contrast-enhanced ultrasound, magnetomotive 

ultrasound (MMUS), elastic media 

I. INTRODUCTION 

AGNETOMOTIVE ultrasound (MMUS) is a contrast-

enhanced imaging modality that uses magnetic 

nanoparticles (MNPs) as contrast agents[1]. Magnetomotive 

imaging, first developed by Oldenburg et al. for optics in 

2005[2], and first deployed in ultrasound by Oh et al. in 

2006[3], utilizes a time-varying magnetic force to drive MNPs, 

and a signal processing algorithm to detect them. Magnetically 

modulated MNPs embedded in the imaging area induce motion 

in the surrounding medium to which they are mechanically 

coupled. Though ultrasound cannot directly resolve MNPs due 

to resolution constraints and low echogenicity, contrast to 

distributions of MNPs is achieved through the identification of 

areas of the medium exhibiting magnetically-induced motion. 

Image processing approaches such as a frequency- and phase-

locking (FPL) algorithm may be used to identify such areas[4]. 

MMUS has shown promise toward applications such as 

imaging of sentinel lymph nodes, as demonstrated in rats[5], 

imaging carcinoma, as demonstrated in mice[6], colorectal 

cancer staging[7], magnetic drug targeting[8], and thrombosis 
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imaging[9]. However, to date no model is available to predict 

both the absolute magnitude and functional dependencies of 

magnetically-induced motion for any given set of imaging 

system and target parameters. In order to make cross-system 

comparisons easier and to aid in system design, an analytical 

model robust to a spatially inhomogeneous magnetic force is 

proposed and experimentally validated. Direct measurements of 

the magnetic force were made using a force sensing pendulum, 

which lead to precise theoretical predictions. 

A variety of hardware, contrast agent, and medium-specific 

parameters may affect the magnetically-induced motion for a 

given MMUS experiment. For example, a wide range of 

magnetic force delivery techniques are currently under study. 

Approaches include supplying time-varying current waveforms 

to electromagnets in order to produce sinusoidal[4], [10] 

pulsed[11], [12] or coded[8] forces,  a scheme derived from 

magnetic particle imaging (MPI) in which a strong static 

gradient field is superposed on a weaker sinusoidally modulated 

magnetic field[13], and even a rotating permanent magnet[14]. 

Characteristics of these forces such as frequency and amplitude 

have been shown to affect MMUS signal[15], [16], and in the 

usual case where the force field is spatially inhomogeneous, 

areas of higher magnetic force correspond to greater MNP 

motion[17]. The choice of contrast agent can also significantly 

affect results, as MNP concentration[4], [12], [17], [18], 

size[19], and coating[20] have all been shown to correlate with 

differences in detected motion. Furthermore, research in this 

group[9] and others[7], [21] has shown imaging to be sensitive 

to medium properties such as Young’s modulus. 

Without a model capable of predicting the effects of the 

parameters described above, challenges arise in designing and 

optimizing MMUS systems to ensure they are performing as 

intended. Furthermore, given the many variables present in the 

production of an MMUS image, cross-system comparisons are 

challenging. As an example, Evertsson et al.’s MMUS 

system[18] produces displacements approximately 12.5 times 

larger than those generated by the apparatus used in this 

work[9], but the underlying reasons are complex. The tip of 

Evertsson’s electromagnet core was placed significantly closer 

to the imaging area than the two cores in this group’s system, 
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and the Young’s modulus of the phantom was lower, both of 

which would likely lead to higher displacements. However, 

Evertsson used MNPs at a lower iron concentration which may 

lower displacement amplitudes, and they also used 

polyethylene glycol-coated MNPs with Fe(II,III)
3O4 (magnetite) 

cores while this group used Fe(II,III)
3O4 nanopowder with no 

coating. The consequences of these differences are challenging 

to predict. To date, finite element simulations have been used 

to qualitatively predict displacements[17] and as part of an 

iterative approach to quantitatively predict MNP distributions 

from MMUS data[22]. More recently a displacement model 

was used to characterize the nonlinear force on MNPs up to a 

scaling factor which had to be determined experimentally[23]. 

A model capable of quantitative displacement predictions 

would reveal the variables with the highest impacts on imaging 

and aid in cross-lab comparisons when using different phantom 

materials, magnet geometries, and excitation schemes. 

In this work, an analytical model for the magnetically-

induced motion of a single particle embedded in a soft tissue-

like medium and subject to an MMUS driving force is 

presented. Motion of MNPs may be tracked with a variety of 

schemes such as FPL[4], [10], [24], cross-correlation 

methods[8], [11], blind source separation[25] and other 

approaches[26]. In this work a sinusoidal driving force is 

assumed and MMUS signal is defined as the magnetically-

induced vibration amplitude, the quantity estimated by the FPL 

algorithm. Thus, the model is designed to predict displacement 

amplitudes to match. However, the approach presented in this 

work could be adapted for any MMUS system employing a 

driving force of sufficiently low frequency (~1 Hz) that 

viscoelastic effects may be ignored[27], and for which image 

processing is displacement-based. As a first step toward a full 

model of MMUS signal generation for arbitrary distributions of 

MNPs in media with complicated boundary conditions, the 

model presented here, based on the Navier-Stokes equation 

under the assumptions of an incompressible fluid with a low 

Reynolds number, accounts for the motion of a single magnetic 

particle in an infinite homogeneous, linearly-elastic, and 

isotropic medium, subject to a spatially inhomogeneous and 

temporally sinusoidal magnetic driving force. Then using 

phantoms, the model’s ability to predict the absolute magnitude 

and functional dependence of MMUS signal for media of 

different Young’s moduli and at different force amplitudes and 

locations within the inhomogeneous force field is validated. In 

order to generate a precise magnetic force map for validation, a 

force-sensing pendulum was constructed capable of direct, 

spatially-resolved force measurements without relying on an 

estimate of the magnetic susceptibility of the MNPs, which is 

challenging to do accurately. Study results demonstrate the 

potential for an MMUS signal generation model to allow for 

easier system design and cross-platform comparisons. Further 

development could lead to the ability for MMUS to sense 

medium properties while controlling for the particles used, the 

magnetic delivery scheme, and imaging parameters. 

II. THEORY 

This analytical model is designed to predict the displacement 

as a function of time for a uniform ball (i.e., a solid sphere) with 

linear magnetization embedded with a no-slip boundary 

condition in an infinite, homogeneous, linear-elastic, and 

isotropic medium with a Young’s modulus much less than that 

of the ball, subject to a temporally-sinusoidal but spatially 

inhomogeneous magnetic driving force. Displacement as a 

function of force magnitude and frequency, ball radius, ball and 

medium mass density, and medium elastic modulus will then be 

extracted and experimentally validated as described in Sec. III. 

A solution with two terms is expected. A steady-state 

sinusoidal term will dominate at long times after the force is 

first applied, and a transient “ring-down” term may potentially 

complicate the extraction of the MMUS signal by dominating 

at short times. Understanding the time scale associated with the 

transient term will allow for the exclusion of data collected 

before the steady-state behavior dominates, or the selection of 

imaging parameters that make this behavior negligible. 

In order to derive the analytical model, the MMUS driving 

force will be convolved with the medium impulse response via 

the following steps. First the driving force will be Fourier 

transformed into the frequency domain. Then the frequency 

domain force and impulse response will be multiplied to arrive 

at the frequency domain displacement. Finally, this 

displacement will be transformed back into the time domain. 

The magnetic driving force, 

 0( ) (1 cos( )),( )f t tt a = −   (1) 

is sinusoidal with driving frequency ω0 and force amplitude a. 

As shown by the dashed magenta trace in Fig. 1a, the sinusoid 

is offset such that the maximum force is 2a, and the minimum 

force is 0, consistent with our system which employs an 

electromagnet driven by a unipolar power supply. The 

Heaviside step function θ(t) accounts for the force being 

switched on at t = 0. Convolution between the Fourier 

transforms of θ(t) and 0cos( ))( ) (1g a tt = −  gives 

 ) (1/ 2 ) ( )* ( ),(F G   =    (2) 

where F(ω) is the transform of (1), ( ) ( ) / ,i    = +  and 

0 0) (2 ( ) ( ) ( )).(G a         = − + − −  In these 

expressions δ is the Dirac delta function, and i is the unit 

imaginary number. Equation (2) then simplifies to 
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The first term in this expression contributes only to the steady-

state behavior of the solution, while the second term contributes 

to both the steady-state and transient behaviors. 

By solving the continuity and Navier-Stokes equations under 

the assumptions of an incompressible fluid (medium) with a 

low Reynolds number, the impulse response H(ω) of the 

medium may be determined by following the derivation in 

Ilinskii et al.[28] in which the expression  
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  (4) 

relates the frequency domain displacement U(ω) to the 

frequency domain force acting on a rigid sphere in a 
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homogeneous viscoelastic medium. In (4) R and ρb are the ball 

radius and density, respectively, while μ and ρ are the medium 

shear modulus and density, respectively. The quantity 

 

2

2( )k
G iG

 
 

 −
  (5) 

is the square of the complex wavenumber, where G’ = μ is the 

medium shear storage modulus, and G” is the shear loss 

modulus which may also be written in terms of the dynamic 

viscosity as ωη. Because G” is much smaller than G’ for the 

gels in this experiment at the 2 Hz frequency used[29], (5) may 

be simplified to k(ω) = ω(ρ/μ)1/2. Importantly, it has been shown 

that soft tissues exhibit the somewhat universal property G” ≈ 

0.1G’ for frequencies around 1 Hz, implying that biological 

relevance is not lost with this simplification[27]. By the 

convolution theorem, the frequency domain displacement is 

 .( ) ( ) ( )U H F  =   (6) 

Thus dividing both sides of (4) by U(ω) yields 
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1
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b
H R ik R k R R     

−

− = − −   (7) 

which describes the displacement associated with an impulse 

force. The product of (7) and (3) is  
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the ball displacement due to the sinusoidal MMUS force. 

To obtain the time-domain displacement, an inverse Fourier 

transform of (8) is needed. By making use of the Dirac delta 

function identity three times, the first term may be simplified to 

form half of the steady state solution. The second term leads to 

a complex integral with five poles, so simplification requires 

contour integration as well as both the Cauchy residue theorem 

and Jordan’s lemma. The result is the other half of the steady 

state solution and all of the transient solution. The sum of these 

contributions yields the time domain displacement for t > 0, 
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in which sinusoidal motion at the driving frequency ω0 (steady-

state) is superposed with an exponentially decaying, sinusoidal 

term at another frequency ωa (transient). The first term is 

centered at the positive displacement offset 

 / 6S a R=   (10) 

and oscillates with amplitude S (χ2 + ψ2)-1/2, where 
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By setting the first derivative with respect to ω0 of (9) equal to 

zero and solving the resulting expression appropriately, the 

peak (or resonant) frequency  
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Fig. 1. Magnetic ball position as a function of time as predicted by (9) for (a) 2 Hz (used in this study) and (b) 763.1 Hz (resonant) magnetic driving frequency 

with a force amplitude of a = 2.3 μN. In each case the sinusoidal force is displayed as a dashed magenta line, while the model prediction is a solid black line. The 
dot-dashed red and dotted blue lines represent the steady-state and transient parts of the solution, respectively. Constants in (9) were set to match parameters 

realized in this work. The medium Young’s modulus was 11 kPa with a quasi-incompressible Poisson’s ratio of 0.495 and a density of 1017 kg/m3, while the ball 

radius and density were 0.25 mm and 7850 kg/m3, respectively to match the chrome steel ball bearings used for validation. The steady-state MMUS signal 
(magnetically-induced displacement amplitude) and displacement phase relative to the driving force are presented in (c) and (d) as a function of driving frequency. 

Traces are displayed for three different Young’s moduli in each plot, while all other constants are maintained. The resonant frequency is visible as the peak in 

displacement amplitude as well as the π/2 crossing on the phase plot. The exponential decay time constant in the transient term as a function of Young’s modulus 
is shown in (e). Results are given for three different ball radii (the magnetic ball, a micro-bead, and a typical nanoparticle) while all other constants are unchanged. 

This demonstrates that the transient term only becomes relevant when the driving frequency is high, the ball radius is large, or the stiffness of the medium is low.  
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may be obtained. Fig. 1 depicts the steady-state solution as a 

red dot-dashed line for the low frequency (a) and resonant 

frequency (b) cases. As shown in Fig. 1a, in the low frequency 

limit where ω0 ≪ ωres, the denominator (χ2 + ψ2)-1/2 ≈ 1, which 

yields a displacement amplitude equal to the central offset value 

S. Thus the ball position varies between 0 and 2S. However, 

higher driving frequencies lead to amplitudes that differ from S 

as shown in Fig. 1c. Displacement amplitudes increase to 

resonance, and then decay when ω0 > ωres. The steady-state 

term’s phase lag relative to the driving force 

 ( )1tan / ,s  −=   (13) 

is less than 0.01 radians when ω0 ≪ ωres, but as shown in Fig. 

1d, increases to π/2 at resonance, and then asymptotes to π as 

ω0 goes to infinity. The larger displacement amplitude and π/2 

phase lag are clearly visible in Fig. 1b despite the same driving 

force. Thus it becomes clear that by keeping magnetic driving 

frequencies in the tens of Hz range or lower as was done in this 

study, the steady-state solution may be assumed to be a simple 

cosine with a positive vertical offset equal to its amplitude and 

zero phase lag relative to the driving force.   

The transient term consists of a cosine of frequency  
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multiplied by a decaying exponential with decay constant 
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The following combinations of (14) and (15), 
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are used to provide an overall scaling factor, and to define the 

transient term phase lag, 

 1tan ,t

Y ZX

X ZY
 − + 

=  
− 

  (17) 

relative to the driving force. Note that, as shown in Fig. 1e, the 

exponential decay time constant 1/ωb is much shorter than the 

period of the magnetic driving force for relevant medium, ball, 

and excitation frequency parameters, indicating that the 

transient behavior may be ignored. However, systems operating 

at higher frequencies approaching ωb may be affected by this 

transient term as shown by the blue dotted trace in Fig. 1b. In 

such cases, the transient frequency given in (14) becomes 

relevant. This frequency is dependent only on medium and ball 

parameters, and is in the range of thousands of rad/s and above 

for all realizable parameters. For example, as R decreases 

toward the nanoparticle regime, the magnitude of the transient 

term decreases several orders of magnitude below that of the 

steady-state term, and the decay time constant drops to the μs 

range or less. Ultimately, in the ω0 ≪ ωres limit explored in this 

work, (9) may be approximated as 
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  (18) 

where in the 2nd equality, μ has been replaced by the medium 

Young’s modulus E and Poisson’s ratio ν. The factor outside of 

the square brackets, S, is the MMUS signal validated in Sec. III. 

III. VALIDATION METHODS 

A. Open-Air Magnetomotive Ultrasound System 

The MMUS imaging apparatus described in Levy et al.[9] 

was used for this work. Briefly, imaging was conducted with an 

Ultrasonix SonixTouch platform and an L14-5/38 transducer 

(Analogic Corporation, Peabody, MA, USA) decreased to a 1 

MHz transmit and receive frequency to provide coarser 

resolution for this study as discussed in Sec. V-B, and focal 

depths between 10 and 20 mm. With these parameters, the axial 

resolution was 0.8 mm, and the lateral resolution ranged from 

1.1 to 2.2 mm at the focus. Thus the 0.5 mm diameter imaging 

targets discussed in Sec. III-B were sub-resolution. 

Beamformed RF data was transferred to a separate PC for 

offline processing in MATLAB R2020a (Mathworks Inc, 

Natick, MA, USA). As shown in Fig. 2 the transducer was 

positioned between the two water cooled solenoid 

electromagnets in a configuration that allowed for samples of 

arbitrary volume to be imaged. An Agilent 33522A arbitrary 

waveform generator (Keysight Technologies, Santa Rosa, CA, 

USA) created a current waveform in each of the electromagnets 

via two Kepco ATE-75-15M, 1000 W power supplies (Kepco 

Inc, Flushing, NY, USA). This resulted in a magnetic gradient 

of ~0.02 T2/m in the imaging area. The flow system described 

in Levy et al.[9] was removed for this work. 

MMUS images were generated in the same manner as 

described in previous work[9]. Two 7.5 s stacks of beamformed 

RF data were collected at 61.667 fps, the first with the magnets 

turned off to allow for background subtraction, and the second 

with their current modulated square-root sinusoidally at 1.9891 

Hz, a value chosen to minimize discrete Fourier transform 

errors. This led to a sinusoidal magnetic driving force of the 

same frequency. The FPL algorithm[4] was then used to 

identify regions of the image containing motion at the same 

frequency as and in phase with the magnetic driving force, and 

to determine the amplitude of that motion. Pixels with 

corresponding B-mode intensities less than 40% of the mean B-

mode intensity were excluded for phase noise suppression. 

Resulting MMUS images are displayed with magnetically-

induced displacement amplitude (MMUS Signal) given in 

nanometers. A median filter with a box size equivalent to one 

resolution cell was used for display purposes only. 

 
Fig. 2.  Schematic diagram (a) and photograph (b) of the open-air MMUS 
system utilized in this study. 
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B. Phantom Preparation 

Gelatin tissue-mimicking phantoms with one or more 

embedded sub-resolution magnetic balls were created with 

physiologically relevant Young’s modulus, acoustic 

attenuation, and speed of sound values for soft tissue in the 

5×10×5 cm (axial × lateral × elevational) rectangular acrylic 

phantom mold shown in Fig. 2b. Gelatin was poured into the 

mold via the open top. To avoid imaging through boundaries 

between gelatin layers, an acrylic side was then removed, the 

phantom was rotated, and imaging was conducted via this 

perpendicular face. The interior of the removable side was 

coated in non-stick cooking spray for easy release. 

Phantoms were prepared in three steps: first a base layer of 

gelatin was poured into the mold and allowed to gel, second a 

magnetic ball was placed on top and covered with a thin layer 

of gelatin, and finally a top layer was poured. For the base layer, 

nominally 10 kPa Young’s modulus graphite-infused gelatin 

was prepared as described in Levy et al.[9] based on a 

formulation first published by Madsen et al.[30] Gelatin from 

porcine skin (4.5 wt%), synthetic graphite nanopowder (4.4 

wt%), and n-propanol (3.0 wt%), were combined to make 250 

ml of gelatin solution, and cooled to 28°C. After a minute of 

gentle stirring, the solution was poured into the phantom mold 

until it was approximately two-thirds full. The phantom was 

placed on ice in the refrigerator with a thermocouple embedded 

to monitor its temperature. The remaining gelatin solution was 

quickly returned to the hot plate where stirring resumed, and the 

temperature was increased to 40°C. 

Once the gelatin temperature in the mold reached 18°C, the 

phantom was removed from the refrigerator and the top surface 

was heated for 5-10 seconds with a heat gun in order to prevent 

air pockets from forming between layers. For phantom 1, a 0.5 

mm diameter chrome steel ball bearing (Salem Specialty Ball, 

Inc, Canton, CT, USA) was placed onto the gelatin and 2 ml of 

heated gelatin solution from the beaker was pipetted on top of 

the ball. For phantom 2, three balls were positioned so as to 

experience different amounts of magnetic gradient force within 

the MMUS system’s field-of-view. The beaker containing the 

remaining heated gelatin was returned to the ice bath and cooled 

to 28°C. After briefly applying the heat gun to the solidified top 

surface of the phantom, this gelatin was added until the 

phantom mold was full. The phantom was placed on ice in the 

refrigerator, and once its internal temperature reached 18°C, it 

was wrapped in plastic for overnight refrigeration. 

C. Calibration of Phantom Temperature to Young’s Modulus 

The Young’s modulus of gelatin varies with temperature. 

Therefore, images collected as a phantom warmed from 

refrigerator temperature to room temperature allowed for the 

expedient study of MMUS displacement amplitudes as a 

function of Young’s modulus. In order to phenomenologically 

determine the functional relationship between temperature and 

Young’s modulus, the following procedure was performed. 

Four graphite-infused gelatin cylinders were created using 

the same recipe described in Sec. III-B. The cylinders were 

created in 6.1 cm diameter PVC molds and were between 3.0 

and 3.5 cm tall for a total volume of about 100 ml. The sides of 

the molds were coated with nonstick cooking spray for easy 

release, and a thermocouple was embedded such that the wire 

emerged from the curved edge of the gelatin cylinder leaving 

the two flat faces uninterrupted. Care was taken to ensure that 

the distance of the thermocouple from the surface in these 

cylinders was approximately the same as in Phantoms 1 and 2.  

After overnight refrigeration, the gelatin cylinders were 

removed the following morning, and immediately subjected to 

compression testing with a TA.XT Plus texture analyzer 

equipped with a 30 kg-rated load cell with 1 g sensitivity 

(Texture Technologies Corp., Hamilton, MA). Compression 

was performed with a 4” diameter cylindrical probe operating 

at 0.5%/s strain rate up to a maximum compressional force of 2 

N (<5% strain). Force data was recorded as a function of 

compressional distance in 1 μm increments, and sent to a PC for 

processing. Compression tests were repeated approximately 50 

times over the subsequent 3-4 hours as the gelatin warmed, and 

the internal gelatin temperature was recorded with each test. 

The Young’s modulus was calculated from the linear elastic 

region of each resulting stress-strain curve and is plotted as a 

function of temperature in Fig. 3 along with the cubic fit 

 
3 20.14 1.0 24.0.0026E T T T+ += −   (19) 

This fit allowed temperature to be used as a proxy for Young’s 

modulus in Phantoms 1 and 2. 

D. Inhomogeneous Magnetic Force Field Measurement 

The magnetic field created by the solenoids in Fig. 2 lead to 

a spatially-inhomogeneous axial magnetic force in the 

ultrasound imaging area. Because the magnetic force was also 

modulated temporally, the spatial inhomogeneity of magnetic 

force amplitude was of central study. In order to characterize 

the axial magnetic force felt by one of the 0.5 mm diameter 

chrome steel ball bearings as a function of location, a “force 

sensing pendulum” was constructed. 

As shown in Fig. 4, the force sensing pendulum was built 

around a 68 cm tall, ridged aluminum stand mounted on a 3-

axis stage. A 4.9 mg 3D printed MicroFineTM pendulum bob 

(Proto Labs Inc, Maple Plain, MN, USA) held the magnetic ball 

internally, and was suspended via 40.5 cm of 0.1 mm diameter 

fishing line from the stand. The electromagnets were rotated 90 

degrees relative to the orientation used for imaging such that the 

primary magnetic force axis (the axial direction) was horizontal 

rather than vertical. Thus, when current was applied to the 

magnets, the pendulum bob would equilibrate at a new location 

to the left of its original equilibrium position as shown in Fig. 

 
Fig. 3.  Gelatin cylinder Young’s moduli measured via compression testing as 
a function of internal temperature. The resulting polynomial fit (19) was used 

to convert measured temperatures to Young’s moduli for Phantoms 1 and 2. 
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4. Given m, the combined mass of the pendulum bob, ball and 

the reduced mass of the string as well as the pendulum length L 

and horizontal displacement Δx, the magnetic force on the ball 

could be determined via 

 .F /B mg x L=    (20) 

In order to measure horizontal displacement, a digital camera 

recorded video of the pendulum equilibrating, as a constant 

current of 12.6 A (the maximum available) was applied to the 

magnets over a 10 s time interval. A 1 mm grid placed behind 

the pendulum served as a reference, and video motion tracking 

was performed in Logger Pro (Vernier Software & Technology, 

Beaverton, OR, USA) to determine horizontal displacement. To 

minimize fluctuations from air currents the entire pendulum 

apparatus was enclosed in a clear acrylic box. The digital 

camera was positioned sufficiently far from the pendulum to 

minimize parallax. 

The pendulum was used to make displacement 

measurements at 55 unique locations in the imaging area, and 

magnetic force was calculated at each. Measurements at 

different locations were achieved by moving the position of the 

magnets relative to the rest position of the pendulum using the 

3-axis stage. In order to avoid unnecessary measurements, all 

data was collected for pendulum positions on one side of the 

axial centerline. Data was then mirrored across this centerline 

under the assumption that the magnetic force field was 

symmetric. As seen in Fig. 5a, a cubic interpolation was then 

applied to the data in order to generate the final force map. 

In order to extend the utility of the force map to situations in 

which currents less than the maximum 12.6 A were supplied to 

the magnets, additional data was acquired at a single magnetic 

ball location. Nine force measurements at varying currents were 

made with the pendulum positioned on the axial centerline and 

1.05 mm below the magnets. As can be seen in Fig. 5b, 

magnetic force amplitude increased as current increased, but 

two distinct linear regions were present, likely due to the onset 

of saturation in the magnet cores. Thus the conversion between 

current I (in Amperes) and magnetic force amplitude a (in μN) 

at a given location (x,z) was defined in a piecewise manner as  

( )
  ( )
  ( )

max

max

, , 4.78A
, ,

0.053 0.38

0.15 0

, , 4.78A

.078
a

I a x z I
x z

I a x z I
I

 
= 

+ 

−



  (21) 

where amax is the force amplitude (in μN) measured at the 

maximum 12.6 A current as plotted in Fig. 5a. 

E. Validation Data Collection and Processing 

In order to collect data on the MMUS signal as a function of 

axial magnetic force amplitude, Phantom 1 was used. The 

phantom was first removed from the refrigerator after overnight 

gelation, and then allowed to come to room temperature over a 

period of 3 hours. The phantom was placed into the MMUS 

imaging apparatus resulting in B-mode images such as the one 

seen in Fig. 6a. Magnetic force amplitude was varied by 

adjusting the peak current of the square-root sinusoidal 

waveform produced by the power supplies via the arbitrary 

waveform generator. Specifically, peak current was varied 

between 0 A, and the maximum value, 12.6 A, in ten roughly 

evenly-spaced steps. Eight images were collected at each 

current value for a total of 80 images. These data were collected 

in a random order to eliminate any potential time dependent 

effects, and phantom temperature was monitored throughout, 

and found to fluctuate no more than 0.5°C. Currents were 

converted to force amplitudes via (21), and (18) was used to 

produce the analytical model prediction for the MMUS signal 

of the magnetic ball in each image. For validation, the ball 

location was manually selected in each image, and a rectangle 

equivalent in size to one resolution cell was generated with its 

center coincident on the selected location. The displacement 

amplitude within that rectangular mask was averaged to 

produce the experimental MMUS signal for the magnetic ball. 

Phantom 2 was used to collect data on the effect of gelatin 

Young’s modulus and ball location within the inhomogeneous 

magnetic force field on MMUS signal. This phantom was 

removed from the refrigerator after overnight gelation, and then 

immediately subjected to imaging. The ultrasound transducer 

was positioned such that all three magnetic balls were centered 

elevationally, and MMUS images were collected over a 

timespan of 2.5 hours as the phantom warmed to room 

temperature. Because the gelatin warmed rapidly at first and 

then more slowly as the phantom approached room 

temperature, images were taken more frequently at the 

beginning. A total of 68 images were collected with 36 in the 

initial 45 minutes, and the rest spread out over the remaining 

105 minutes. Temperatures were recorded for each image and 

converted to Young’s moduli via (19). The model prediction 

and experimental MMUS signal for each of the three embedded 

magnetic balls was then determined as described previously. 

 
Fig. 4.  Diagram of the force sensing pendulum. The electromagnets are rotated  
90° relative to their usual position (see Fig. 2), and the magnetic ball inside a 

3D printed pendulum bob is hung from a stand. When the magnets are turned 

on, the pendulum bob equilibrates to a new location. Given the horizontal 
deflection Δx, the weight of the ball and bob FG, and the length of the pendulum 

L, the magnetic force FB at the ball’s equilibrium location can be calculated. 

Values for different locations in the imaging area are obtained by adjusting the 
stage. Care is taken to ensure that the ball is always centered elevationally. 

  

 
Fig. 5.  Force map as measured by the force sensing pendulum. Plot (a) is a 

map of magnetic force as a function of position in the imaging area with 
magnet current set to its maximum value. Dots indicate measurements, and 

contours indicate a cubic interpolation. Plot (b) shows the magnetic force at 

one location as a function of current.  
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IV. RESULTS 

Fig. 6c shows MMUS signal as a function of axial magnetic 

force amplitude for the single magnetic ball in Phantom 1. Each 

data point on the plot is the average signal from 8 images, and 

error bars represent the standard deviation. Temperature was 

held constant at 10.8 ± 0.2°C throughout. The model prediction 

for MMUS signal as given by (18) is shown as a solid blue line 

with the 95% confidence interval shaded light blue. As 

predicted by the model, the data demonstrate a strong linear 

dependence between force and displacement with R2 = 0.97. All 

data points agree with the model within the confidence interval. 

Figs. 7c and d show the model prediction and Phantom 2 

validation results respectively for the Young’s modulus 

dependence of MMUS signal. Each data point in Fig. 6d 

represents the average signal for a given ball over all images 

taken while the medium was within a 1 kPa range, and error 

bars correspond to the standard deviation. Weighted power law 

fits to the equation αE-1 where α corresponds to the coefficient 

in (18) are shown below the plots with 95% confidence 

intervals. As predicted by the model, balls 1-3 exhibit MMUS 

signals inversely proportional to Young’s modulus, with R2 

values of 0.91, 0.68, and 0.88 respectively. The proportionality 

constants for Balls 2 and 3 agree within uncertainty. 

V. DISCUSSION AND FUTURE WORK 

The analytical model of magnetic particle displacement 

presented in (18) predicts that MMUS signal varies linearly 

with magnetic force amplitude, and inversely with medium 

Young’s modulus. Experimental validation results corroborate 

both these functional dependencies as well as the signal 

magnitudes. As shown in Fig. 6c, varying the amplitude of the 

magnetic force while holding the phantom temperature, and 

thus Young’s modulus, constant lead to a linear relationship 

between MMUS signal and force, with R2 = 0.97. Furthermore, 

experimental MMUS signal magnitudes agree with the model 

for all 10 data points. As shown in Fig. 7d, each of the three 

magnetic balls in phantom 2 exhibit 1/E-dependent MMUS 

signals with R2 values of 0.91, 0.68, and 0.88. The overall 

MMUS signals were largest for ball 3 and smallest for ball 2. 

This means that the inhomogeneous force map given in Fig. 5 

worked as expected as balls 3 and 2 were predicted to feel the 

largest and smallest magnetic force amplitudes, respectively. 

MMUS signal magnitudes agree with theory for balls 2 and 3, 

while exhibiting signals approximately 30% higher than theory 

for ball 1. As predicted by Fig. 1e, no transient behavior was 

observed in the experimental data. For the parameters used in 

this study, a transient decay time constant of less than 1 ms was 

expected, well below the (2 Hz)-1 magnetic excitation period. 

A. Uncertainty Analysis 

In order to establish agreement between model predictions 

and experimental data, it is important to understand the sources 

of uncertainty present, and how they affect the predicted 

MMUS signals. To determine the 95% confidence intervals 

displayed in Figs. 6 and 7, uncertainties in the ball radius R, the 

force amplitude a, and the medium Young’s modulus E were 

propagated through equation (18). 

Although different chrome steel magnetic balls from the 

same lot were used in each phantom, uncertainty in ball radius 

is unlikely to have contributed significantly to uncertainty in 

predicted MMUS signals. The manufacturer specified 

uncertainty is 0.003 mm, or 0.6%. When propagated to the 

displacement, the result is a contribution to MMUS signal 

 
Fig. 6.  Phantom 1 images and results: (a) Ultrasound B-mode image showing 

the location of the magnetic ball as a bright spot. (b) MMUS image showing 
the corresponding displacement map. Magnetically-induced displacement 

amplitude (MMUS Signal) is given by the color bar. (c) Average MMUS signal 

S in the resolution cell centered on the magnetic ball as a function of magnetic 
force amplitude a exhibits a linear relationship as predicted by (18). Error bars 

represent the standard deviation of repeated measurements. 

  

 
Fig. 7.  Phantom 2 images and results: (a) Ultrasound B-mode image showing 

the locations of the magnetic balls. (b) Corresponding MMUS displacement 
map. Magnetically-induced displacement amplitude (MMUS Signal) is given 

by the color bar. (c) MMUS signal given by the model (18) as a function 

Young’s modulus for forces corresponding to the ball locations in (a). (d) 
Experimental MMUS signals and weighted fits for balls 1-3 as a function of 

Young’s modulus. Each data point is the average of all images within a 1 kPa 

range. Error bars represent the standard deviation. 
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variance of no more than 0.4%. Furthermore, an upper limit of 

2% uncertainty in MMUS signal at high forces due to ball 

radius was confirmed in the lab, implying that ball radius does 

not have an important impact on overall uncertainty. 

Uncertainty in the magnetic force amplitude measurements 

accounted for approximately 46% of the overall MMUS signal 

variance. Amplitudes were calculated based on physical 

parameters of the force sensing pendulum such as mass and 

length, as well as its rest and equilibrium positions when 

subjected to the magnetic driving force. These position 

measurements, which required manual frame-by-frame 

selection and suffered from a small parallax discrepancy as the 

pendulum bob moved out of line with the camera lens, 

contributed most to the overall uncertainties of approximately 

0.2 μN. At higher force amplitudes, this propagates to only 3-

10% uncertainty in MMUS signal. However, because different 

balls were used for the pendulum measurements and the 

phantoms, changes in the magnetic susceptibilities of the balls 

could potentially lead to additional uncertainty. Three 

precautionary measures were taken to avoid this. First, all 

chrome steel balls used in this work were taken from a single 

lot, second, all balls were passed through a demagnetizer before 

use, and third, plastic (rather than metal) tweezers were used at 

all times. To demonstrate agreement across balls, two phantoms 

prepared in the same manner as phantom 1 both exhibited 

average MMUS signals of 120±20 nm over the 8 images taken 

while each phantom had a Young’s modulus of 13±2 kPa. 

The largest contribution to uncertainty came from the 

Young’s modulus measurement, which made up ~53% of the 

total variance in MMUS signal. In order to determine Young’s 

moduli, thermocouples were embedded in the phantoms, and 

temperature measurements were converted to E via (19). The 

thermojunction was placed slightly away from the ball to avoid 

interference with imaging. Because warm air causes cold 

phantoms to warm from the outside in, thermocouples were 

buried at the same depth as were the magnetic balls. As an 

additional check, two separate thermocouples were embedded 

at similar depths within a block of gelatin. Temperature 

readings were monitored over 3 hours and never differed by 

more than 0.5°C, corresponding to a Young’s modulus 

uncertainty of less than 1 kPa, or less than 20% of overall 

MMUS signal at higher force amplitudes. Uncertainty due to a 

temperature gradient causing a non-uniform Young’s modulus 

during gelatin cylinder compression testing was reduced by 

using smaller volumes than in Phantoms 1 and 2, and was 

accounted for in the total variance. 

B. Contrast Agent Realism 

In this work, the magnetic contrast agent under study was 

chosen to be a chrome steel ball bearing with a known applied 

magnetic force in order to simplify the process of validating the 

model. Generally in MMUS imaging, magnetic nanoparticle 

contrast agents are used and the magnetically-induced motion 

of individual MNPs cannot be directly resolved due to their lack 

of echogenicity and ultrasound resolution constraints. It is 

instead the surrounding medium to which the particles are 

coupled that is imaged via MMUS. To match this situation, a 

low 1 MHz transmit and receive frequency was used so that the 

ball would be a sub-resolution target. MMUS signals were not 

observed to differ significantly when the transmit and receive 

frequencies were switched between 1 MHz and 10 MHz. 

Motion detected for any given resolution cell is a weighted 

average of motion within that cell, so while the scale was 

different, surrounding tissue motion was still taken into 

account. However, in order to extend the model for use with 

multiple particles, medium motion outside of a single resolution 

cell must be known. This may be achieved in the quasi-static 

limit by the solution to the displacement within an elastic solid, 

for example, as in [31]. Work in this group by Thapa et al. 

recently employed such a model to link the force on a 

distribution of MNPs to the resulting displacement field by 

employing Green’s method[32]. Thapa’s work provided 

medium displacements for a distribution of particles up to a 

scaling factor, while this work provided numerical values for 

displacements for a single particle. A combination of these two 

results may yield a quantitative, multi-particle model in future 

work. Furthermore, more work will be needed to assess the 

impact of nano-scale heterogeneities, such as porosity, in the 

medium surrounding MNPs. 
Additionally, while the magnetic force applied to MNPs is 

not known for most MMUS systems, the model is still 

applicable. If the magnetic susceptibility of the MNPs and the 

magnetic gradient field in the imaging area are known, 

calculation of the force amplitude a should always be possible 

under the assumption of linear magnetization[33]. Future work 

may demonstrate that such measurements would obviate the 

need for the force sensing pendulum. 

VI. CONCLUSION 

In this study an analytical model for the motion of a single 

magnetic particle undergoing MMUS imaging was proposed. 

The model, based on a solution to the Navier-Stokes equation, 

assumed an infinite, homogeneous, linearly-elastic, and 

isotropic medium, with a single magnetic particle experiencing 

magnetically-induced displacement due to a spatially 

inhomogeneous and temporally sinusoidal driving force. The 

model was validated to exhibit similar functional dependencies 

with regard to the magnitude of the force and the medium 

Young’s modulus. The model also quantitatively predicted 

displacement amplitudes within validation uncertainty. Thus, 

for any MMUS system, given either a magnetic force field or a 

magnetic gradient map and MNP susceptibility, the model may 

be used to predict the magnetically-induced motion under 

various medium conditions. This provides a method for 

verification of system performance as well as much-needed 

cross-system comparisons. For example, identical ball 

phantoms could be used to discriminate between signal losses 

due to different MNPs versus differences in the imaging 

apparatus. The model additionally provides a framework by 

which experimenters may design systems to either avoid or 

utilize resonant and transient displacements as desired. 
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